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Abstract—We study the temporal variation characteristics of 

PM10 and wind velocity in eight South Korean cities. We employ 

the detrended cross-correlation analysis (DCCA) method to 

extract the overall tendency of the hourly variation. We ascertain 

from three-daily and one-weekly intervals that Busan has the 

negative largest, while Donghae has the positive largest in the 

DCCA cross-correlation coefficient between PM10 and wind 

velocity. As a result of Asian dust events, the cross-correlation is 

statistically significant for the hourly time series data less than 

two days. Particularly, we discuss whether a cross-correlation is 

statistically significant or not from random number surrogation 

and shuffled time series surrogation. 

Keywords— PM10; Wind speed; Asian dust; DCCA; Random 

number surrogation; Shuffled time series surrogation 

 

I.  INTRODUCTION 

Particulate matter is composed of organic and inorganic 
mixtures such as natural sea salt, soil particle, vehicle exhaust, 
construction dust, and soot. Some of these particles with 
aerodynamic diameters of less than 10 microns that can enter 
the body’s respiratory system are known as PM10 [1,2]. PM10 

concentration has an effect on climate change by causing an 
imbalance of the global radiative equilibrium through direct 
effects that block the stoma of plants and cut off the solar 
radiation, these are different from the indirect effect that 
change the optical properties of clouds, cloudiness, and the 
lifespan of clouds [3,4]. Various factors contribute to the 
degree of PM10 concentration. Notable among these are the 
type of land use and surface vegetation coverage, as well as 
meteorological factors [5]. 

The temporal data of the PM10 concentration that occurs in 
metropolitan areas were affected depending on the source, 
seasonal fuel usage, urban layout, commuting traffic 
environment, and micrometeorological change. Especially, 
concentration distribution is influenced greatly according to 
changes in temperature, the wind speed, and humidity [4,6]. 
Jang et al. [7] analyzed the spatio-temporal occurrence period 
of the fluctuation of particulate matter by using a power 
spectrum analysis. Giri et al. [8] also examined the relationship 
between meteorological parameters and urban air pollutants via 
the Pearson’s correlation. Particularly, Xue et al. [2] investigated 
the trend of PM10 concentration variations and correlations between 
suspended particles and meteorological variables by using 
correlation analysis via data of time series. However, the 

methods and techniques used in such studies are fundamentally 
based on the correlation method. These were not able to 
remove the specific trend of various time series data like 
meteorological data, and the premise that time series have 
normality, when non-normality may actually be the case. 
Therefore, the reliability of the results is lacking for judging a 
correlation. 

In this study, we analyze and simulate cross-correlations 
along time scale between PM10 concentration and wind speed 
using the detrended cross-correlation analysis (DCCA) method 
[9-11] through the removal of specific trends in eight South 
Korean cities. We discuss the effect of meteorological factors 
on the fluctuation of PM10 concentration during Asian dust 
events and other time periods. In addition, in order to quantify 
whether cross-correlations are significant or not, we examine 
statistical cross-correlation tests and random permutations of 
the original data.  

II. THEORETICAL METHODOLOGY 

A. DCCA Method 

In this section, for the purpose of simplicity, we are 

concerned with two time series of PM10 differences { }ix  and 

wind velocity differences { }ix ′ , where 1,2,...,i N= . Then, we 

introduce statistical quantities 
1
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where k N≤ . Next, we let to introduce the DCCA method, 

which is a generalization of the detrended fluctuation analysis 
method and implemented in two published papers [10,12]. For 
two time series of equal length N, we compute two integrated 

signals kX  and 
kX ′ , where 1, 2,...,k N= . We also divide the 

entire time series into N− n and ends at i + n, we define the 

local trend, ,k iX  and ,k iX ′
 (i ≤ k ≤ i + n), to be the ordinate of 

a linear least-squares fit. The detrended walk is defined as the 
difference between the original walk and the local trend as 
well. The covariance of the residuals in each box is calculated 
as 
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From (1), we calculate the detrended covariance function by 

summing over all overlapping N − n boxes of size n as follows:
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Here, the γ  exponent quantifies the long-range power-law 

cross-correlations and also identifies seasonality, but γ
 
does 

not quantify the level of cross-correlations. Lastly, we find the 

DCCA cross-correlation coefficient and compare our result to 

other findings. The DCCA cross-correlation coefficient DCCAρ  

is defined as the ratio between the detrended covariance 

function 2 ( )DCCAF n and the detrended variance functions,  

( )DFAF n and ( )DFAF n′ ,  i.e., 

 
2 ( )

( , , , )
( ) ( )
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′
. (3)  α  + β  = χ. (1) (1) 

From (3), the value of DCCAρ
 
ranges between 1− ≤  1DCCAρ ≤ , 

and ( )DFAF n nα∝  and ( )DFAF n nα ′′ ∝  are, respectively, 

characterized by the detrended fluctuation analysis exponents 

α  and α ′ , and box size n. Equation (3) is also dependent 

upon two time series of length T . When the variables i and j 

are perfectly cross-correlated, the value of DCCAρ  is 1. On the 

other hand, DCCAρ = −1 if two variables are perfectly anti 

cross-correlated. DCCAρ = 0 corresponds to the case where the 

relation between two variables have no cross-correlation. 

Furthermore, we can calculate for an infinitely long time 

series when DCCAρ =0. For finite time series, even if cross-

correlations are not present, DCCAρ  has presumably some small 

nonzero value. Hence the DCCA cross-correlation coefficient 

can serve as an indicator of cross-correlations. 

B. Data 

In this study, we selected 4 coastal cities (Busan, Incheon, 
Mokpo, and Donghae) and 4 inland cities (Daegu, Daejeon, 
Wonju, and Andong) in South Korea peninsula. Inland cities 
were designated to be those located more than 50 km from the 
coast, while those located closer to the coast were designated to 
be coastal cities.  

We analyzed PM10 concentration in the data of the Air 
Quality Monitoring network that the Ministry of Environment 
runs, and a period of data of 5 years from 2006 to 2010. The 
meteorological factor used in this analysis is wind speed, and 
we use the data of the manned regional meteorological offices 
of the Korea Meteorological Administration in order to ensure 
reliability of data, and it is data of five years from 2006 to 2010 
years, as is the case with the PM10 concentration data. 

The number of Asian dust days was decided by observed 
days of Asian dust KMA, while the number of non-Asian just 
days was the remaining days of the analysis period. To perform 
the DCCA, we use hourly data of the day that Asian dust was 
observed.  

C.  Random Number Surrogation and Shuffled Time Series 

Surrogation 

For finite time series, because of the size effect, even if 

cross-correlations are not present, DCCAρ  is presumably some 

small nonzero value. Therefore the DCCA cross-correlation 
coefficient serves only as an indicator of the presence of cross-

correlations. If DCCAρ  is 0.2 or 0.3, this value must be judged to 

be present or absent. In order to test whether the cross-
correlations are significant or not, we examine them using the 
method that generates random number surrogates suggested by 
Podobnik and Stanley [9]. In addition, we conduct random 
permutations of the original data to find out the distribution 

effect of the time series on DCCAρ , since time series data 

generally appear to have a non-normal distribution. First, we 
determine the null hypothesis in random number surrogation. 
Because this is not a unique choice, we begin by assuming that, 
with the null hypothesis, the time series are independent and 
identically distributed random variables and calculate the range 

of DCCAρ  that can be obtained under the assumption that the 

time series are independent and identically distributed random 

variables. We calculate critical points ( , )rc T nρ  for the 90% 

confidence level defined such that the integral between 

( , )rc T nρ−  and ( , )rc T nρ  is equal to 0.90. Thus, we determine 

the range of DCCAρ  within which the cross-correlations can be 

considered statistically significant. In the Asian dust, we 
determine this for each of two different choices of time series 
length-ranging from T=1134 and calculate the probability 

distribution function (PDF) ( )DCCAP ρ for the DCCA cross-

correlation coefficient DCCAρ  in (3) for different values of box 

size n. Each PDF is obtained by generating 100 independent 
and identically distributed time series pairs taken from a 
Gaussian distribution. We use a trend based on a first-order 
polynomial fit. 

Second, let us introduce shuffled time series surrogation. 
This is also assumed for the null hypothesis. The time series 
data is obtained through random permutations of the original 

data and the range of DCCAρ  hat can be obtained under the 

assumption is calculated. This method guarantees that the 
surrogate data will be consistent with the null hypothesis of a 
δ -correlated random process, while exactly preserving the 

distribution of the original data. We calculate critical points 

( )sc nρ  for the 90% confidence level. We thus determine the 

range of DCCAρ  within which the cross-correlations can be 

considered statistically significant. We determine this for both 
Asian dust days and non-Asian dust days by city. In addition, 

we calculate the PDF ( )DCCAP ρ of the DCCA cross-correlation 

coefficient DCCAρ  in (3) for four different values of box size n. 

Each PDF is obtained by generating 100 time series pairs which 
are shuffled. We also use a trend based on a first-order polynomial 
fit. To confirm the normality of the shuffled time series, we 

introduce skewness wS  and kurtosis tK  as  

3 2 3/2( ) / [ ( ) ]w i i

i i

S x x x x= − −∑ ∑                 (4) 
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and 

4
2 2( ) / [ ( ) ]t i i

i i

K x x x x= − −∑ ∑ ,         (5) 

where skewness means a symmetric degree of distribution, and 
the value of skewness is zero at normal distribution. Kurtosis 
measures the flatness of a distribution, and normal distribution 
has a kurtosis value of three.  

III. NUMERICAL CALCULATIONS AND RESULTS 

A. DCCA Method in the Asian Dust Events 

First of all, we examine the DCCA analysis between PM10 
and wind speed during Asian dust events during the five years 
in the in eight cities. We decide on box size n from 3 hours to 

168 hours (a week). We report the DCCAρ  between PM10 and 

wind speed in Table I and Fig. 1. 

TABLE I.  CORRELATION COEFFICIENTS DCCAρ  BETWEEN PM10 AND WIND 

SPEED. 

 

As shown in Fig. 1, in the case of PM10 and wind speed, 

there exists a positive correlation with 15 51n≤ ≤  in Andong. 

In Busan and Donghae of the coastal area, there exist positive 

correlations with 12n ≤  and 27 45n≤ ≤ , respectively. The 

cross-correlation with 12 48n≤ ≤  is used the mean duration 

time of Asian dust. Furthermore When Asian dust flows into 

the Korean peninsula, humidity is in inverse proportion 

according to the increase or decrease of PM10 concentration 

according to Jang et al. [7]. On the other hand, the change of 

pressure and temperature is similar with a case in which Asian 

dust does not occur. 

B. Critical Values for the Random Number Surrogation 

The range of DCCAρ  which can be considered statistically 

significant is shown in this section. Fig. 2 shows the PDF 

( )DCCAP ρ  of the DCCA cross-correlation coefficient DCCAρ  for 

four different values of box size n. As it is the PDF which 
based on independent and identically distributed random 

variables followed in a Gaussian distribution, ( )DCCAP ρ  is 

symmetric. This is influenced by two parameters, time series 
length T and box size n. For each T the PDF converges to a 
Gaussian distribution as the value of n increases because of the 

central limit theorem. Table II is the critical value (1134, )rc nρ  

for the 90% confidence level. Because of an unfound form of 
PDF for values of n, we calculate the critical values 
numerically. As most of correlation coefficients between 
temperature and PM10 show positive values, but in case of 

humidity show largely negative values, we calculate the upper 
limit value and the lower limit value through a two-sided test. 

 

Fig. 1. DCCAρ  between PM10 and wind speed. 

 

Fig. 2. PDFs of critical value (1134, )rc nρ  for the statistical test. 

TABLE II.   CRITICAL VALUE (1134, )rc nρ  FOR THE DCCA CROSS-

CORRELATION COEFFICIENT WHEN EACH SERIES IS GAUSSIAN IN 90% 

CONFIDENCE LEVEL WITH ZERO MEAN AND UNIT VARIANCE (T=1134). 
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C. Critical Values for Shuffled Time Series Surrogation 

Fig. 3 is the plot of the PDF ( )DCCAP ρ  of the DCCA cross-

correlation coefficient DCCAρ  between PM10 and wind speed for 

four different values of box size n in the four cities of inland 
areas. As it is the PDF which is based on random permutation 

of the original data, ( )DCCAP ρ  is non-symmetric. Fig. 4 is a 

histogram of shuffled original data for values of skewness and 
kurtosis in Daejeon (representative value of the inland area). 
The values of skewness and kurtosis indicate that the data of 
meteorological factors and PM10 assume non-normality.  

In Tables III and IV, we can find the critical value ( )sc nρ  

between PM10 and wind speed for the 90% confidence level in 

the eight cities. Because of an unfound form of PDF for 

greater values of n, we calculate the critical values 

numerically. When we judge cross-correlation, we use the 

average of critical values. Likewise, we can calculate upper 

limit and lower limit values through a two-sided test. Because 

of the non-normality of the time series data, the moduli of the 

upper and lower limit values are shown small differences. 

We compare DCCAρ  with the critical point (1134, )rc nρ  and 

( )sc nρ  for each n. If (1134, )DCCA rc nρ ρ>  and 

( )DCCA SC nρ ρ> , the cross-correlations are considered 

statistically significant, and we reject the null hypothesis that 

DCCAρ  comes from a Gaussian independent and identically 

distributed time series and the random permutation of the 

original data with no cross-correlations. This means that the 

area below (1134, )rc nρ  and ( )sc nρ  to 0 means insignificant 

correlations. 

TABLE III.  CRIRICAL VALUE FOR CROSS-CORRELATION COEFFICIENTS DCCAρ  

BETWEEN PM10 AND WIND SPEED IN COASTAL AREAS. 

 

 

Fig. 3. PDFs of critical value between PM10 and wind speed.  

 

Fig. 4. Shuffled original data for values of Kurtosis and Skewness in Daejeon 
during Asian dust.  

TABLE IV.  COEFFICIENTS DCCAρ  BETWEEN PM10 AND WIND SPEED IN 

INLAND AREAS. 

 

TABLE V.  ESTIMATED RESULTS OF CROSS-CORRELATION COEFFICIENTS 

BETWEEN PM10 AND WIND SPEED IN COASTAL AREAS. 

 Incheon Donghae Mokpo Busan 

Value 
T-test 

(P-value) 

X-square 

(P-value) 

T-test 

(P-value) 

X-square 

(P-value) 

T-test 

(P-value) 

X-square 

(P-value) 

T-test 

(P-value) 

X-square 

(P-value) 

n=3 
1.040 

(0.302) 

2.763 

(0.251) 

-3.890 

(0.000) 

6.813 

(0.033) 

3.940 

(0.000) 

30.165 

(0.000) 

-2.190 

(0.031) 

36.860 

(0.000) 

n=6 
-0.599 

(0.550) 

5.353 

(0.069) 

-0.762 

(0.448) 

1.017 

(0.601) 

0.413 

(0.680) 

7.665 

(0.022) 

-3.020 

(0.003) 

10.444 

(0.005) 

n=12 
-2.040 

(0.044) 

14.302 

(0.001) 

-3.110 

(0.002) 

3.801 

(0.149) 

-3.480 

(0.001) 

7.732 

(0.021) 

-1.290 

(0.201) 

11.410 

(0.003) 

n=24 
3.770 

(0.000) 

119.13 

(0.000) 

-4.320 

(0.000) 

8.544 

(0.014) 

-4.330 

(0.000) 

3.187 

(0.203) 

-3.230 

(0.002) 

6.302 

(0.043) 

n=48 
3.480 

(0.001) 

90.785 

(0.000) 

-3.640 

(0.000) 

8.503 

(0.014) 

-0.938 

(0.350) 

5.409 

(0.067) 

-5.690 

(0.000) 

0.908 

(0.635) 

n=72 
3.620 

(0.000) 

94.104 

(0.000) 

-3.110 

(0.002) 

4.895 

(0.0865) 

-0.040 

(0.968) 

12.768 

(0.002) 

-5.730 

(0.000) 

18.824 

(0.000) 

n=168 
3.190 

(0.002) 

37.475 

(0.000) 

3.150 

(0.002) 

10.208 

(0.006) 

-1.190 

(0.238) 

10.204 

(0.006) 

-7.310 

(0.000) 

30.110 

(0.000) 

TABLE VI.  ESTIMATED RESULTS OF CROSS-CORRELATION COEFFICIENTS 

BETWEEN PM10 AND WIND SPEED IN INLAND AREAS 

 

 Daejeon Wonju Daegu Andong 

Value 
T-test 

(P-value) 

X-square 

(P-value) 

T-test 

(P-value) 

X-square 

(P-value) 

T-test 

(P-value) 

X-square 

(P-value) 

T-test 

(P-value) 

X-square 

(P-value) 

n=3 
2.970 

(0.004) 

1.805 

(0.406) 

3.860 

(0.000) 

4.548 

(0.103) 

-4.020 

(0.000) 

10.185 

(0.006) 

-5.400 

(0.000) 

6.489 

(0.039) 

n=6 
3.220 

(0.002) 

9.597 

(0.008) 

2.180 

(0.032) 

0.816 

(0.665) 

-1.720 

(0.088) 

12.310 

(0.002) 

-4.050 

(0.000) 

8.667 

(0.013) 

n=12 
2.500 

(0.014) 

3.859 

(0.145) 

1.710 

(0.010) 

2.770 

(0.250) 

-2.310 

(0.023) 

5.249 

(0.073) 

-3.690 

(0.000) 

10.450 

(0.005) 

n=24 
0.780 

(0.437) 

7.785 

(0.020) 

4.300 

(0.000) 

9.217 

(0.010) 

-1.640 

(0.101) 

3.743 

(0.154) 

-4.720 

(0.000) 

0.397 

(0.820) 

n=48 
0.920 

(0.360) 

7.447 

(0.024) 

3.510 

(0.001) 

10.133 

(0.006) 

-3.380 

(0.001) 

4.753 

(0.093) 

0.584 

(0.561) 

2.281 

(0.319) 

n=72 
0.788 

(0.423) 

9.009 

(0.011) 

3.170 

(0.002) 

2.347 

(0.309) 

-5.480 

(0.000) 

2.607 

(0.272) 

4.120 

(0.000) 

8.695 

(0.013) 

n=168 
1.220 

(0.226) 

16.275 

(0.003) 

3.110 

(0.002) 

46.887 

(0.000) 

-8.790 

(0.000) 

7.529 

(0.023) 

7.010 

(0.000) 

16.558 

(0.000) 
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Tables V and VI present the estimation results of the cross-
correlation coefficient between PM10 and wind speed in coastal 
and inland areas, with both the Student-t and X-squared tests. 
First, To discuss the T- and P-values of the cross correlation 
coefficient for the 90% confidence level, the cross-correlation 
coefficients, except for n=12 in Busan, are closer to normal 
except for n=12, while those in Mokpo are not practically 
significant for n=6 and 12. In inland areas, the cross-correlation 
coefficients in Daejon for n=3, 6, and 12 are statistically 
significant, while those are not statistically significant in 
Wonju (Daegu) for n=12 (24). To consider the normality test of 
statistical data via the X- and P-values for the cross correlation 
coefficient between PM10 and wind speed in coastal areas, the 
cross-correlation coefficients in all values n of Busan are 
statistically significant, while the cross-correlation coefficient 
is not statistically significant in Mokpo for n=168. The cross-
correlation coefficients in Daejon for n=24, 48, 72, and 168 can 
be considered statistically significant, while those are not 
statistically significant in Mokpo for n=24 and 48 in inland 
areas. 

IV. SUMMARY 

We have analyzed correlations from time scales between 
PM10 concentration and wind speed by using the DCCA 
method through the removal of specific trends in eight South 
Korean cities. We introduced time series data into non-Asian 
dust events to analyze the change of wind speed due to a 
fluctuation in PM10 concentration. We have also examined 
statistical cross-correlation tests in order to quantify whether the 
cross-correlations are significant or not. The processes to 
quantify whether cross-correlations are significant or not are as 
follow: first, we calculate the values of correlation coefficients 
using the DCCA method. Secondly, we generate critical values 
to test whether cross–correlations are genuine or not using a 
random number surrogate and a shuffled data surrogate. 
Thirdly, we determine the range of correlation coefficients 
within which the cross-correlations can be considered statistically 
significant. 

As a result of Asian dust events, a cross-correlation was 
considered significant when 12 48n≤ ≤ . This is considered to 

be the mean and max duration time of Asian dust events. 
However, there is no cross-correlation between PM10 and 
meteorological factors with the exception of time interval. It is 
found that fluctuation of PM10 concentration is greater than the 
meteorological factors. 

In the case of correlation between PM10 and wind speed, 
cross-correlations are more significant in inland areas than in 
coastal areas. Particularly, there exist negative correlations in 
Daegu and Wonju. It was assumed that when the source of 
particles is domestic, the wind has a diluting effect and thus 
produces a negative correlation. But in case of coastal areas, 
when a pollutant is injected from external sources, there could 
be a positive correlation. For this reason, there exists a positive 
correlation in Incheon when n is 24, 48, 72, and 168. The 
correlation between humidity and PM10 is mostly negative in 

cities other than Busan and Daegu [12]. We noticed that the 
values of cross-correlations between PM10 and meteorological 
factors could be quantified by way of the DCCA cross-
correlation coefficient [9,11]. In the future, we hope that this 
study will be extended to treat other types of climatological 
data, due to the general applicability of the DCCA cross-
correlation coefficient.  
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